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ABSTRACT

Flow Adaptive Video Object Segmentation

Fanqing Lin
Department of Computer Science, BYU

Master of Science

We tackle the task of semi-supervised video object segmentation, i.e, pixel-level object
classification of the images in video sequences using very limited ground truth training data of
its corresponding video. Recently introduced online adaptation of convolutional neural networks
for video object segmentation (OnAVOS) has achieved good results by pretraining the network,
fine-tuning on the first frame and training the network at test time using its approximate prediction
as newly obtained ground truth. We propose Flow Adaptive Video Object Segmentation (FAVOS)
that refines the generated adaptive ground truth for online updates and utilizes temporal consistency
between video frames with the help of optical flow. We validate our approach on the DAVIS
Challenge and achieve rank 1 results on the DAVIS 2016 Challenge (single-object segmentation)
and competitive scores on both DAVIS 2018 Semi-supervised Challenge and Interactive Challenge
(multi-object segmentation). While most models tend to have increasing complexity for the
challenging task of video object segmentation, FAVOS provides a simple and efficient pipeline that
produces accurate predictions.

Keywords: machine learning, video object segmentation, semi-supervised, interactive, convolutional
neural network, optical flow, online adaptation
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Chapter 1

Introduction

As Convolutional Neural Networks (CNNs) revolutionize the field of computer vision,

there has been a trend to move from tasks such as image classification [15, 23, 43, 53] to object

detection [11, 12, 26, 38], and from image segmentation [3, 4, 21, 29] to video object segmentation

[18, 25, 41, 48]. Video object segmentation and tracking is vital in computer vision and has many

significant applications such as video editing, autonomous vehicles, robotics etc. The segmentation

task for video objects involves classifying each pixel as to whether it is part of a specific object

in image frames of videos. The capability to successfully segment objects in videos is a key step

towards human-level understanding of the surrounding environment for machines.

Recently in video object segmentation (VOS), many have achieved good performance by

pretraining on large classification datasets to help the networks learn general objectness [17, 41, 48].

Object proposal is becoming increasingly popular for generating detection boxes for bounded

segmentation [14, 24, 28, 50]. Optical flow is commonly used to help networks learn temporal

consistency between video frames [17, 18, 25, 42, 46]. Some update the networks online at test

time using previous predictions in order to adapt to large changes and keep track of objects during

the video sequences [7, 18, 31, 48]. There is also interesting work tackling the task of VOS using

unsupervised methods [20, 45].

This paper focuses on the task of semi-supervised video object segmentation, which is

the task of pixel-wise classification of object(s) in video sequences given very limited in-domain

annotation. The task is extremely challenging due to the scarcity of training data for the target

objects in videos during test time. In DAVIS16 (single-object) [32] and DAVIS17 (multiple-objects)
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[35], only the fully annotated ground truth of the first frame is provided for object segmentation in

each video sequence. In DAVIS18 [34], the Semi-supervised Challenge is the same as DAVIS17.

DAVIS18 also introduces an Interactive Challenge that evaluates both accuracy and the speed of the

models, which simulates simple human-like interactive feedback scribbles1 from the DAVIS server

and measures the performance of models over time.

For the task of semi-supervised VOS using only the ground truth of the first frame, we

validate our approach on DAVIS16 and DAVIS17. We propose to improve the recently introduced

online adaptation of convolutional neural networks for video object segmentation (OnAVOS) [48].

OnAVOS adopted the architecture proposed by [49], achieved 1st place on DAVIS16 and 5th place

on DAVIS17 with a single online-adaptation pipeline. We include a brief description of OnAVOS in

Section 3.0.1. OnAVOS builds on OSVOS [41], which introduces pretraining steps for the network

to learn general objectness before fine-tuning on the ground truth mask of the first frame in a specific

video at test time. OnAVOS claims that its predecessor lacks the ability to adapt to large changes in

video sequences due to its limited knowledge based only on the first frame of videos, and adaptively

introduces an approach to update the network during test time, training on previous high-confidence

predictions. However, the applied methods for obtaining the high-confidence prediction is rather

elementary, simply applying a constant threshold to the foreground logits2 to extract the confident

foreground regions, and a distance transform3 followed by a very large distance threshold to extract

the confident background regions. This approach lacks the ability to adapt across various video

sequences due to its handpicked threshold values, which we demonstrate later. More importantly,

OnAVOS neglects large portions of effective potential training due to its simplicity in selection

of the new masks for online adaptation. Therefore, we propose a new adaptation algorithm that

improves the adaptation masks for online training with the utilization of optical flow, which achieves

better accuracy without compromising the model complexity. We refer to our approach as Flow

Adaptive Video Object Segmentation (FAVOS).

1Simulated simple human sketches for feedback that corrects the given segmentation prediction.
2Probability map for the output frame.
3Operation that transforms a binary image into distance values to the closest foreground boundary.
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Comparing with the other state of the art approaches [14, 18, 24, 28, 50], our proposed

method achieves competitive accuracy with much lower model complexity and higher efficiency.

We show our results and provide complexity analysis in Section 4.0.3.

For the task of semi-supervised VOS given interactive feedback, we validate our approach

on DAVIS18 Interactive Challenge. The DAVIS18 server provides simulated interactive feedback on

the worst predicted frame after receiving a complete set of predictions per iteration, and evaluates

performance in multiple iterations. Despite the fact that FAVOS is relatively time-efficient, the

online training time is still unacceptable for the speed evaluation of the DAVIS 2018 Interactive

Challenge. As a result, for the purpose of the challenge, we omit the online training step for each

frame from FAVOS and only train on the scribbles of the given frames for limited time in each

iteration. A detailed description of our approach is included in Section. 3.0.3.

3
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Chapter 2

Related Work

Segmentation in Computer Vision. Research in the task of image segmentation has history long

before the era of deep learning. In 2001, Boykov and Jolly [51] presented a widely used interac-

tive graph cut algorithm for N-dimensional image segmentation, which prompts the user to mark

certain pixels for foreground and background regions needed for optimal segmentation. In 2006,

Criminisi [6] extended the task of image object segmentation to video object segmentation by using

a Spatio-temporal Hidden Markov Model, using both the color likelihood and motion likelihoods

with the spatial and temporal priors. Bai [1] later introduced SnapCut in 2009, which is capable of

segmenting foreground objects more accurately given the ground truth of the first frame in a video

by using localized classifiers on foreground boundaries that track the motion of object with the

help of optical flow. Similarly, Price [36] introduced LIVEcut, which uses the graph-cut framework

and propagates the user-defined foreground region frame-by-frame, taking cues such as color,

gradient, shape, temporal coherence into account while learning the feature-weightings interactively.

Traditional computer vision approaches depend on the interactive user-defined inputs for the task of

video object segmentation in order to track objects accurately. However, consistent user modifica-

tion can be tedious, which leads to the need for segmentation algorithms in the field of deep learning.

FCNs for Semantic Segmentation. Solving the task of semantic segmentation using fully convolu-

tional networks (FCNs) was initially proposed by Long et al. [27]. They replace the fully-connected

layers in classification networks with 1x1 convolutions so the network becomes fully convolutional.

In addition, they define skip connections that share features between different levels in the network

4



www.manaraa.com

to help produce detailed segmentation. Similar usage of skip connections introduced in ResNet

have also become state of the art for image classification tasks [15], capable of training very deep

neural networks without the vanishing gradient issue. Wu [49] and Zagoruyko [53] argued that deep

residual networks experimentally act as ensembles of many shallower networks and proposed shal-

lower but wider residual network models that outperform their predecessors in image classification.

Additionally, Wu introduced a slightly modified model for semantic segmentation task which also

shows competitive results across multiple datasets.

Video Object Segmentation and Tracking. Unlike semantic segmentation, which only requires

segmentation on certain classes, target objects vary in different video sequences for the task of

VOS. Therefore, models need to learn to generalize on limited annotation and be able to track the

objects throughout videos in VOS. Common traditional approaches tackling the task of VOS use

superpixels [5, 13], patches [10, 37] or object proposals [33] in order to compensate for the high

dimensionality of the original input space and gain efficiency. Various optimization techniques are

then applied to best utilize the connections across the video frames for resulting segmentations.

Recently, as large datasets and computational power become more available, convolutional

neural network based approaches [14, 18, 19, 24, 27, 28, 41, 48, 50] have become the state of

the art in VOS. Pretraining on large image classification datasets has been proven effective for

semi-supervised VOS [41, 48]. Alternatively, Khoreva [18] performs extensive data augmentation

on specific videos using the provided first frame ground truth, and argues that training on small sets

of data of objects related to specific videos is sufficient to produce good results. Le [44] and Li

[25] firstly detect the target objects and perform segmentation on the detected bouding boxes, their

methods perform well on re-identifying previously missing objects. [24, 30] use deep models to

learn similarity between images and propagate the objects found similar to ground truth to achieve

object tracking. The usage of optical flow is also common. Khoreva [19, 50] uses optical flow to

propagate previous masks and treats the segmentation task as a mask refinement task. In addition,

[18, 19, 25] utilize temporal consistency by feeding the optical flow field as additional input to the
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models. While others have mostly used optical flow as additional input to variational pipelines,

hoping that CNNs would automatically learn the temporal connections between frames, we propose

to use precomputed optical flow directly to refine the adaptation masks for accurate new ground

truth masks and update the network online to adapt to various changes objects may experience

throughout the video.

Interactive Video Object Segmentation. Since for the task of VOS, very limited annotation

of the target objects is provided for models to learn to segment throughout a video, in which objects

change shapes, sizes, positions and experience occlusion or even reappearance, it is common for

deep learning approaches to be time-consuming during the training phase. Additionally, taking

interactive feedback from user was very common among the traditional computer vision approaches

for the task of VOS. As a result, the DAVIS 2018 Interactive Challenge was introduced to evaluate

not only the accuracy, but also the speed of the models. The DAVIS server simulates human-like

feedback on the worst predicted frame per iteration to interact with the segmentation model and

evaluates the results by Area Under Curve (AUC) and J@60s, where the area of an accuracy vs time

plot is computed and interpolated so the score at the 60-second mark is also evaluated. For faster

training, we omit the online adaptation from FAVOS. Similar to FAVOS, we improve the training

data by refining feedback scribbles provided by the DAVIS server and show that with a proper

training schedule and improved training ground truth, a simple pipeline can achieve competitive

results. Since the DAVIS 2018 Interactive Challenge is introduced as a teaser challenge due to

the technical challenges behind hosting the server and validating the results, we only compare our

results against the baseline approach.

6
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Chapter 3

Approach

3.0.1 OnAVOS

We propose to build upon OnAVOS [48], which uses a base model (following OSVOS

[41]) that was pretrained on ImageNet [8] and PASCAL [9] by mapping all 20 annotated classes to

foreground and other regions to background. In addition, to gain higher resolutional and domain-

specific knowledge on the target dataset, OSVOS and OnAVOS fine-tune on the DAVIS training

set. Both approaches demonstrate that the pretraining steps are necessary for promising results.

At test time, OSVOS and OnAVOS perform data augmentation and finetune on the ground truth

masks of the first frames of targeted video sequences. However, OnAVOS argues that OSVOS

is unable to adapt to large changes across the entire sequence, and hence introduces an online

adaptation step that continues the training of the network based on its high-confidence predictions.

By updating the network online, OnAVOS shows an excellent improvement of score from a mIoU

(mean Intersection-over-Union) of 81.7% to 85.7% on DAVIS 2016, and from a mIoU of 76.6% to

77.4% on the Youtube-Objects dataset.

The online adaptation method that OnAVOS uses demonstrates its effectiveness in helping

the network to adapt. However, we noticed that the adaptation scheme is rather elementary. First,

OnAVOS applies a handpicked probability threshold of α = 0.97 to the foreground logits and

extracts the high-confidence regions for the foreground adaptation masks. This thresholding method

performs well in simple cases where the network outputs very high probabilities on correct pixels;

but in difficult cases, it loses the foreground region entirely when the network is not very confident

of its predictions (Figure 3.1). Secondly, to extract the confident background masks, OnAVOS
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(OnAVOS)

(FAVOS)

Figure 3.1: Comparison between OnAVOS and FAVOS. With adaptation mask refinement, we
maintain improved segmentations while OnAVOS loses the target object. Best viewed in color.

applies a simple erosion4 on the selected foreground region, inverts the values and performs a

distance transform followed by a thresholding with a constant threshold value of d = 150 (treating

4Morphological operator that decreases the area of the foreground selection from its boundaries.

8
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pixels far away from the foreground boundary as the background). The unknown regions between

the foreground and the background adaptation masks are then not used for training. The intent

of this selection method for adaptation masks is so the network will always train on correctly

annotated pixels. Experimentally, both OnAVOS and we have observed that if we decrease the

thresholding values on OnAVOS to gain more training information, the network starts learning

incorrect information about the target pixels and soon makes more incorrect predictions lead to

unrecoverable drifts in predictions. Therefore, the adaptation scheme used by OnAVOS is low-risk

to apply, yet it neglects much potential information useful for training and sometimes avoids training

entirely when the predictions fail to meet the thresholding standards.

3.0.2 FAVOS

We introduce Flow Adaptive Video Object Segmentation (FAVOS) that extracts its high-

confidence regions for the online training with the guide of optical flow5 [16, 39]. Originally,

OSVOS states that methods using temporal consistency (including optical flow) work well when the

target objects transition very gradually, but fail in cases such as occlusions and abrupt motion. Build-

ing on OSVOS, OnAVOS does not utilize any temporal information either. We have also observed

that the current top-performing approach [16] for obtaining the optical flow field is far from perfect

and its usage could possibly lead to degradation in performance in video object segmentation. The

question becomes: how can we utilize the rough optical flow field estimation correctly to improve

performance?

The main idea of our approach is to obtain the confident foreground and background regions

by utilizing the current prediction and the previous prediction remapped (flow warped) by the

optical flow field. The adaptation algorithm used by OnAVOS [48] utilizes the temporal connection

between previous and current predictions by using regions too far away from previous foreground

prediction as a mask for current background predictions, which is simple yet produces good results.

The intuition is that new objects entering the scenes are particularly troublesome to predict since the

52-channel vector field that represents the motion of pixels from f ramet to f ramet+1.

9
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Algorithm 1: Flow-guided Online Adaptation for VOS

Input :Pretrained network N, confidence percentage ρ , initial finetuning steps ninit , total
online-training steps ntotal = 15, first frame online-training steps n f irst = 2,
current adaptation mask online-training steps ncur = 1 pre-computed optical flow
fields F, size threshold for noise removal s = 0.05.

1: Fine-tune N for ninit steps on frame(1)
2: lastmask← ground truth(1)
3: For t in total frame num, do
4: For i in total object num, do
5: cur f gi← fg predict(t) on ob jecti
6: cur f gi← confident fg(cur f gi, ρ) #confident foreground
7: f low f gi← flow warp(lastmask, F(t-1)) on ob jecti
8: con f ident f gi← create confident fg(cur f gi, f low f gi)
9: unsure regioni← create unsure(con f ident f gi, F(t)) #unsure region

10: con f ident bgi←∼(con f ident f gi ∪ unsure regioni) #confident background
11: confident adaptation mask← combine confident regions from all objects
12: If confident adaptation mask 6= /0, then
13: interleaved for ntotal steps:
14: train(N, ncur, confident adaptation mask)
15: train(N, n f irst , ground truth(1))
16: End If
17: final prediction← noise removal(fg predict(t), s)
18: lastmask← final prediction

network has not trained on them as negative examples and therefore outputs high probabilities. By

using the previous mask to help determine an approximate foreground region, the false positives far

away from previous foreground can be set as background for training before the final prediction.

However, OnAVOS had to set the foreground logits threshold value α and background distance

threshold value d very high for safe adaptations, therefore leaving out much blank area between the

confident foreground and background for useful training.

In order to obtain more informative and still accurate adaptation masks, we have performed

numerous experiments which utilize additional information other than the current and previous

predictions, particularly the optical flow field (obtained using FlowNet2.0 [16]). Initially, we used

the optical flow field in a similar way to [19], which intends to extract a rough segmentation mask of

the primary object using the flow field, based on the assumption that objects tend to have consistent

motion. This approach works well on videos where the background motion is consistent and the

10
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3.2: Optical flow fields with helpful segmentation information, consistent motion in fore-
ground and background (a,b,c,d). Optical flow fields that have various motion in foreground and
background, therefore the target object’s segmentation information cannot be extracted (e,f,g,h).

primary target object has a different motion than the background, but fails in most other more

general cases (see Figure 3.2). As a result, instead of using the optical flow field for additional

segmentation information, we use it as a mapping tool that warps the previous mask to produce a

current estimation [18], which we refer to as flow estimation. Ideally, accurate flow fields could

potentially enable us to output perfect segmentations throughout the video given the ground truth

of the first frame without any deep networks. Unfortunately, from experiments, we observe that

the flow estimations are very approximate and cannot output accurate segmentations independently.

We conclude that both flow estimation and current prediction are necessary for obtaining better

adaptation masks. Algorithm 1 demonstrates our approach, which we also describe in detail in the

following section.

Finetuning on the first frame. We use model pretrained on image classification datasets [8, 9] and

the DAVIS datasets [32, 35], and finetune the model on specific video sequences using the provided

first frame of ground truth [48] (Algorithm 1: line1). For DAVIS 2016 Challenge, since the task

of single object segmentation is rather simple, we follow [48] by training on the first frame for

ninit steps. As for DAVIS 2017 Challenge, the task of multiple-object segmentation is much more

difficult, specifically due to a significant amount of data skew which leads to inbalanced training for

11
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Figure 3.3: FAVOS online adaptation pipeline. We combine the current prediction and flow warpped
estimation to create adaptation mask, which we use to finetune the network online for final prediction
on each frame. Best viewed in color.

objects with different sizes. We address this issue by introducing a two-phase finetuning method. In

phase one, we train the model for a maximum of ninit1 steps on the first frame. If the mIoU score

exceeds (1.0/I)*(I-1) where I is the number of target objects or in cases that the maximum step

is reached, we will proceed to the next phase. At the beginning of phase two, our model is either

capable of recognizing all the target objects, or has trained extensively yet is still unable to recognize

all target objects (note that the smallest objects can be only a few pixels in size). We then train

the model for a fixed ninit2 steps in phase two so the model is guaranteed to have domain-specific

knowledge on the target video sequence. Our two-phase finetuning method enables the model to

adapt to video sequences with various level of difficulty.

ratioi =


1.0− sizei/size f g, f oreground ratio

size f g/sizetotal, background ratio

scalei = max(min(ratioi,0.55),0.45)

balanced loss =
I

∑
i=0

scalei ∗ lossi

f inal loss = bootstrap cross entropy(balanced loss, b)

(3.1)

12
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Algorithm 2: Confident foreground selection for adaptation mask

Input :Probability logit map for current prediction L, foreground mask from current
prediction C, foreground mask from flow warpped previous prediction P, τ = 0.8.

1: IoU← intersection over union(C, P)
2: If IoU≥ τ Then
3: confident fg = IoU
4: Else
5: µc = mean(L[C])
6: µp = mean(L[P])
7: If µc ≥ µp Then
8: confident fg = C
9: Else

10: confident fg = P

In addition, we introduce a class-balanced loss function to balance the training between

objects with different sizes. As shown in Equation 3.1, we first compute the foreground ratio and

background ratio separately. The foreground ratio is determined by the proportion between the

size of ob jecti and the size of the total foreground. The background ratio is then balanced with the

total amount of training foreground objects receive. In the case of I = 1, we balance the losses by

treating background as another foreground object. After obtaining the balanced ratios for the target

objects, we limit the ratios to be between 45% and 55% to avoid over-balancing, which can result

in excessive training for small objects and insufficient training for large objects respectively. For

the last step, we apply a bootstrapped cross-entropy loss [52] on the balanced loss, which selects

the hardest b% pixels for training (b = 35). Experimentally, we have discovered that applying

bootstrapped cross-entropy loss without class-balancing [48] performs well in general cases, but

fails to detect relatively small objects.

Online training using adaptation masks. Figure 3.3 illustrates our approach (Algorithm 1:

line4−11). To obtain the confident adaptation mask in each frame of the video sequence, our first

step is to obtain the current foreground prediction for each object. We use distance transform on

the predicted foreground object and select the region with distance values larger than an adaptive

threshold determined by a percentile value ρ , such that the inner ρ% of the initial foreground is se-

13
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lected as confident foreground region. Figure 3.1 shows the improvement of our approach compared

with applying a constant threshold on the foreground probability map [48]. The second step is to

warp the previous foreground prediction using the optical flow field to produce flow estimation for

each object. We then generate the confident foreground region using both the current prediction and

the flow estimation as described in Algorithm 2, which checks the agreement between the current

prediction and the flow estimation by using the IoU and selecting the confident foreground region

accordingly. To avoid training on incorrect pixels, which can immediately lead to escalated errors

in future predictions, we insert an unsure layer where no training takes place. The unsure layer is

generated by applying a distance transform and a distance threshold on the confident foreground

region, so pixels that are within the range of d pixels from the foreground are selected as unsure.

The value of d is adaptively determined by the optical flow magnitude for the target object. Finally,

the confident background region is simply the region outside of the unsure region. After obtaining

the confident regions for all objects, we combine them to produce the final adaptation mask for the

current frame. In general, we want to maximize the confident foreground/background region and

minimize the number of incorrectly labeled pixels for the adaptation mask. As for online adaptation

(Algorithm 1: line12−16), we iteratively fine-tune the network by training on the adaptation mask of

the current frame (for ncur steps) and the ground truth of the first frame (for n f irst steps). Re-training

on the first frame is significant since the current adaptation masks can be inaccurate and the network

needs to retain the knowledge of the target object. After the online adaptation, we produce a final

prediction mask for the current frame by averaging the pixel-wise posterior probabilities over 10

runs for more stability [47]. For DAVIS 2016 dataset, we perform DenseCRF [22] in the same

fashion as OnAVOS. For DAVIS 2017/2018 dataset, the only post-processing required for the final

prediction is using connected-components labeling6 for noise removal. We remove small compo-

nents which fail to exceed a size threshold of s = 5% of the largest component for the corresponding

object class.

6Technique used to detect connected regions in binary digital images.

14
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3.0.3 Interactive Segmentation

The DAVIS 2018 Interactive Challenge introduces a new way of evaluating segmentation

models, which measures both accuracy and speed. During the testing phase, the server allocates

fixed time intervals available for each video, where T = #Iterations×#Objects×30s (#Iterations

= 8, #Objects is the number of target objects in a specific video sequence). For each new video

sequence, the server provides the model with 1 of 3 predefined human-annotated scribbles, which

only consists of the data points that belong to the corresponding objects of a particular frame.

The first scribble is special since it provides the most information for the target objects. For each

new iteration, the server generates a new simulated scribble that consists of data points in key

misclassified regions of the worst predicted frame from previous predictions and waits for a new set

of predictions on all video frames. Testing for one video is finished if either the model runs out of

time or has finished all 8 iterations. The accuracies achieved in iterations are recorded for video

sequences. The overall accuracy vs time plot is generated by interpolating and averaging scores

from all videos, after which AUC and J@60s are computed and compared between models.

Given the number of objects that range from 1 to 10 in videos of the DAVIS 2018 Interactive

Challenge Set, the time available for models to train and predict on a video can range from 4 to 40

minutes. In order to take advantage of the maximum number of simulated scribbles generated from

the server in the allocated time, a model needs to aim for an average time of #Ob jects×30s per

iteration. In the case of #Ob jects = 1, the model has 30 seconds for each iteration and 4 minutes in

total for training and predicting the entire video sequence, which is an extremely short amount of

time for deep learning models. As a result, we omit the online-training part of FAVOS for faster

response time. We are the only team that participated in both the DAVIS 2018 Semi-supervised

Challenge and the DAVIS 2018 Interactive Challenge.

Improved training on the first scribble. Unlike simulated scribbles for the following iterations,

the first scribbles are predefined by human annotators. For each video sequence, there are 3 first

scribbles on different frames that are proper representations of the entire sequence, each manually
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Figure 3.4: Scheduled training procedure for DAVIS 2018 Interactive Challenge. We train on
drastically improved first scribble mask for faster and better first submission. For the following
iterations, we train on the pool of received scribble masks for a training time that allows maximum
number of iterations.

sketched by a human annotator with a certain style. For segmentation, each ground truth pixel

contributes to the weight updates. So we improve the first scribbles to help the model train on more

annotated pixels, achieving better and faster predictions for its first submission. As illustrated in

Figure 3.5, the original first scribbles contain very limited information, yet have great potential for

improvements. For all scribbles, we apply a simple dilation with size 7 on the original target regions

and the same technique as Section 3.0.2 to generate unsure regions. Additionally, for first scribbles,

we apply component-based GrabCut7 [40] to select the best object-like regions that contain the

original scribbles. We treat the given scribbles as confident foreground, and regions outside of the

unsure region as confident background. Finally, the inner ρ% of the target region is extracted for

safe training. Due to the simplicity of the given scribbles and imperfection of the GrabCut results,

we only apply this technique on the first scribbles for faster first submission. Although simulated

scribbles generated by the DAVIS server provide limited information, they are guaranteed to be

accurate and thus are safer for future training. We refer to the improved scribble images for training

as scribble masks.

Scheduled training on scribble masks. Figure 3.4 illustrates our training procedure. For

each video sequence, in order to have a fast and accurate first submission, which defines the be-

7Technique used to select refined foreground and background regions on images given user-defined confident
foreground, background and unsure region.
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ginning score in the accuracy vs time plot and has a significant impact on the AUC, we train the

model on the improved first scribble mask with a stopping criteria. We stop training on the first

scribble mask once the average training loss ceases to decrease for 20 steps, then generate the

output predictions. This stopping criteria allows the model to adapt to video sequences with various

levels of difficulty. Maximum prediction time is recorded so that we can compute the training time

available for future iterations by subtracting the prediction time from the iteration time. During

the training phase of each iteration, we randomly select from the pool of received scribble masks

and train for as many steps as possible for the given time. Data augmentation is applied in the

same fashion as Section 3.0.2. This scheduled training procedure aims to generate a decent first

submission, and maximize the number of iterations under limited time, which allows the server to

provide more simulated feedback scribbles for improvement.
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Sequence: rollercoaster

Sequence: carousel

Sequence: lock

Sequence: salsa

Figure 3.5: Comparison between original first scribbles (left column) and our improved first
scribbles (right column). Colors shown are the original coloring in the annotations of DAVIS dataset
for different target objects. Given simple scribbles, we drastically increase the total number of
annotated pixels for training. Unsure regions and annotated regions are labeled as white and different
targets’ corresponding colors with 0.50 and 0.70 opacity respectively for better visualization. Best
viewed in color.
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Chapter 4

Experiments

4.0.1 Datasets

This paper focuses on the task of semi-supervised video object segmentation. Specifically,

we test on the recently introduced DAVIS (Densely Annotated VIdeo Segmentation [32, 34, 35])

datasets. DAVIS16 (single-object segmentation) [32] contains 30 fully annotated video sequences

for training and 20 video sequences that only provide the first frame of annotation for validation.

DAVIS17 [35] introduces multiple-object segmentation. It contains 60 fully annotated video se-

quences for training, and 30 video sequences for each of the validation, test-development and

test-challenge sets. DAVIS18 [34] repeats the semi-supervised challenge in DAVIS17 and addition-

ally introduces interactive video object segmentation by providing simulated human-like interaction

from a server and measuring both the accuracy and the speed of the model. The DAVIS 2017

Test-development set is used for the interactive track.

4.0.2 Experimental Setup

For DAVIS16 and DAVIS17, we use pretrained models provided by OnAVOS and apply the

same learning rates (λ = 3 ·10−6 for finetuning phase, λ = 10−5 for online adaptation). During

training, we also augment the training data by random scaling with factors uniformly distributed

in [0.7, 1.3]. However, we omitted the random flipping from data augmentation since the location

of instances at a particular time is important information for multiple-object segmentation. On

DAVIS16, we finetune the model on the first frame for ninit = 50 steps [48]. The confidence

percentage value ρ is set to 85%. On DAVIS17, we use two-phase finetuning with ninit1 = 2000,
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Measure FAVOS OnAVOS OSVOS-S CINM RGMP FAOVOS OSVOS MSK PML SFL

Region J (Mean) 0.869 0.861 0.856 0.834 0.815 0.824 0.798 0.797 0.755 0.761
Region J (Recall) 0.970 0.961 0.968 0.949 0.917 0.965 0.936 0.931 0.896 0.906
Region J (Decay) 0.041 0.052 0.055 0.123 0.109 0.045 0.149 0.089 0.085 0.121

Boundary F (Mean) 0.850 0.849 0.875 0.850 0.820 0.795 0.806 0.754 0.793 0.760
Boundary F (Recall) 0.899 0.897 0.959 0.921 0.908 0.894 0.926 0.871 0.934 0.855
Boundary F (Decay) 0.046 0.082 0.058 0.147 0.101 0.055 0.150 0.090 0.078 0.104

(a) DAVIS 2016 Validation Results. Top 10 are shown from a total of 20 teams.

Measure PReMVOS DyeNet ClassAgno OnlineGen LucidTrack HCMUS FAVOS TeamVia Kthac Huber99

Global Mean 0.747 0.738 0.697 0.695 0.678 0.663 0.606 0.601 0.589 0.545
Region J (Mean) 0.710 0.719 0.669 0.675 0.651 0.641 0.584 0.577 0.567 0.518
Region J (Recall) 0.795 0.794 0.741 0.770 0.725 0.750 0.656 0.649 0.631 0.564
Region J (Decay) 0.190 0.198 0.231 0.150 0.277 0.117 0.262 0.272 0.307 0.257

Boundary F (Mean) 0.784 0.758 0.725 0.715 0.706 0.686 0.629 0.624 0.611 0.572
Boundary F (Recall) 0.867 0.830 0.803 0.822 0.798 0.807 0.710 0.717 0.676 0.625
Boundary F (Decay) 0.208 0.203 0.259 0.185 0.302 0.135 0.297 0.281 0.331 0.295

(b) DAVIS 2018 Semi-supervised Challenge Results. Top 10 are shown from a total of 18 teams.

Table 4.1: Experimental results on DAVIS16, DAVIS17 and DAVIS18. Our results are marked in
blue.

ninit2 = 800 and ρ = 75%. We select the hyperparameters using the provided validation sets.

Experimentally, the values for the hyperparameters are not sensitive and values within reasonable

ranges produce similar results.

For DAVIS18 Interactive Challenge, we use λ = 3 ·10−5 for training in first iterations, and

λ = 1.5 ·10−5 for training in the following iterations. The confidence percentage value ρ = 60%

for selecting confidence foreground from GrabCut results. For the insertion of unsure layers around

confident foreground region, the distance threshold d = 60 for first scribble masks and d = 100 for

simulated scribble masks due to higher level of uncertainty.

In the DAVIS16 Challenge and DAVIS17 Test-Challenge, both the region and boundary

scores as measured as described in [32, 35]. For the DAVIS18 Interactive Challenge, AUC is

computed from the generated region score vs time plot. Additionally, region score at 60-second

mark (J@60s) is also evaluated by interpolating the AUC.
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4.0.3 Results

Single-object VOS. The DAVIS16 Challenge ranks methods based on the region score (mIoU). As

illustrated in Table 4.1a, we achieve rank 1 in the DAVIS 2016 Challenge with a mIoU of 0.869.

Given only the annotation of the first frames in videos, it is challenging for models to generalize

and maintain the initial accuracies. We achieve the most stable performance by having a region

decay of 0.041 and boundary decay of 0.046.

Multiple-object VOS. The DAVIS17/18 Semi-supervised Challenge is much more challenging

than DAVIS16 Challenge due to the introduction of multiple instance segmentation. Table 4.1b

shows that we achieve the 7th place out of 18 teams on the DAVIS 2018 Test-Challenge with global

score (average of region and boundary) of 0.606. However, despite of having slightly lower accuracy

compared with the top-performing approaches, FAVOS has much lower model complexity and

higher efficiency. Speed evaluation is not provided by most of the models, so we provide a study

on the pipelines used by the top 5 approaches in the DAVIS 2018 Semi-supervised Challenge for

complexity analysis. As shown in Table 4.2, we have concluded a summary of major techniques

applied. In-domain data augmentation is applied in all studied approaches for more training data

on the target objects. Most approaches use technique proposed by [18] for data augmentation.

Both PReMVOS [28] and LucidTrack [18] generates 2.5k augmented images for pretraining, while

FAVOS only pretrained on 100 augmented images. The top 4 models rely on an object proposal

network to generate bounding boxes prior to the object segmentation, which requires per-video

training for target-specific detection or object searching for general object detection. Online adapta-

tion is applied for better tracking on the target objects by almost all studied models. Interestingly,

DyeNet [24] utilizes similarity between frames and the propagation network, therefore it is not

strictly dependent on domain knowledge and online adaptation. PReMVOS [28] and ClassAgno

[50] both generate coarse predictions followed by a refinement network, which adds another deep

model to their overall pipelines. Approaches that apply instance-based segmentation have time

complexity that grows approximately linearly with the number of target objects in the video se-
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PReMVOS[28] DyeNet[24] ClassAgno[50] OnlineGen[14] LucidTrack[18] FAVOS

In-domain Data Augmentation X X X X X X
Object Proposal Network X X X X – –

Online Adaptation X Optional X X – X
Refinement Network X – X – – –

Instance-based Segmentation X X X X – –
Optical Flow X X X – X X

Ensemble X – – – X –
Temporal Consistent Merging X X X – – –

Multiple Iterations – X – X – –

Table 4.2: Comparison of the main pipelines used for the top 5 models in DAVIS18 Semi-supervised
Challenge with FAVOS for complexity analysis. FAVOS is much simpler in terms of model
complexity and also achieves competitive results. Detailed analysis is included in Section 4.0.3

quences. Inevitably, the object-merging algorithm for combining the predictions for all objects is

needed for post-processing. Optical flow is used by all studied models except for OnlineGen [14],

which does not depend on temporal consistency for object tracking. Ensembles can be used for

improved predictions at the cost of model complexity and time. PReMVOS uses an ensemble of

models trained on the top 11 sets of parameters and LucidTrack obtained results via an ensemble of

4 different models. After finishing the predictions for all frames in a video, top 3 models refine the

set of predictions using merging algorithms for better temporal consistency. PReMVOS selects and

links per-frame object proposals using optical flow, ReID embeddings, objectness scores and other

present objects; DyeNet generates multiple streams of object predictions as a result of bi-directional

propagation from multiple starting points in videos, and merges the streams of predictions by cosine

similarities; ClassAgno applies a CNN-based spatio-temporal MRF [2] to refine the generated

masks. Finally, DyeNet and OnlineGen improve their results by refining their models for multiple

iterations through their entire pipelines.

To summarize, FAVOS produces competitive results with a much simpler pipeline compared

with the other top approaches. Among the top 5 models, LucidTrack is the only approach with

similar model complexity as FAVOS. They reported a training time of ∼3.5 hours per video. Our

approach has a total training and testing time of∼45 minutes per video, which is nearly a fifth of the

timing of LucidTrack. We also show that higher model complexity does not always lead to higher
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accuracy. For evaluation on the DAVIS16 Challenge for single-object segmentation, PReMVOS and

DyeNet reported mIoU of 86.8 and 86.2 respectively, while FAVOS achieves a mIoU of 86.9.

Interactive VOS. The Interactive Challenge provides only simple scribbles instead of fully anno-

tated first frames in videos, therefore models have even more limited initial information. However,

unlike the Semi-supervised Challenge, models can receive information on multiple frames from

interactive feedback, which can potentially lead to better performance. We have observed that

for the task of VOS, training on multiple informative scribbles can achieve comparible results as

training on the fully annotated ground truth of the first frame. We compare our approach with the

baseline since this challenge is very experimental. We achieve an AUC of 0.450 with J@60s of

0.230 and outperform the baseline of AUC = 0.299 with J@60s of 0.141 by a significant margin.

Due to the time limit for iterations in the setup of DAVIS 2018 Interactive Challenge, we had to

omit online adptation from FAVOS.
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Chapter 5

Conclusion

In this work, we propose FAVOS for the task of Semi-supervised Video Object Segmentation.

We have improved over OnAVOS, introducing a new pipeline that performs online adaptation with

the utilization of optical flow and achieves better accuracy without increasing the model complexity.

We show that our approach achieves competitive results on the DAVIS datasets with simplicity

and efficiency. With interactive user feedback for practical applications, FAVOS is capable of

adapting to various challenging changes in objects throughout the video and provide nearly perfect

segmentation.

We also adapt FAVOS for the task of Interactive Video Object Segmentation. We demonstrate

that fast and accurate learning from simple scribbles can be achieved by proper scheduled training

on improved scribble masks.
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